

^{聪慧的听觉}
Intelligent hearing

Page 026 Safety Guard

Slope Monitoring GNSS 地质变形动态监测系统

基于GNSS形变监测解决方案,对公路边坡、桥梁、大坝、尾矿库、采空区及路基沉降等形变,进行数据实时自动采集、传输、存储、处理,为综合预警和防护工作提供全天候毫米级智能化监控,打造GNSS监测生态数据链,科学分析形变演化趋势,并进行智能预警,以期达到防灾减灾、保障人民群众生命财产安全的目的。

Safety Guard Page 027

System composition

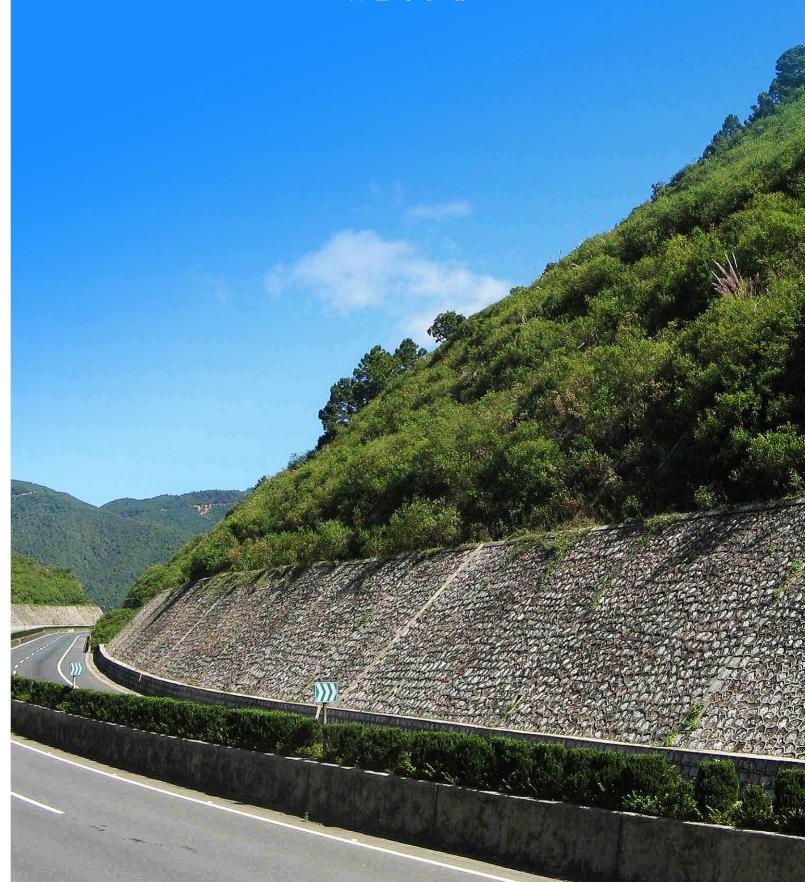
系统组成

◎ 数据采集系统

由形变监测和标准站 GNSS 接收机、GNSS 天线及各种 传感设备构成。

由服务器系统及形变监测软 件系统组成,是监测系统数 据处理、分析中心,实现高 精度GNSS 数据处理、坐标 解算和形变分析。

对整个系统进行管理和可视 化操作,分配不同层级用户 权限,对监测数据进行管理, 并对原始数据进行分析。



由有线或无线通讯网络构成, 根据监测对象实际通讯环境, 选择相应数据通讯方式,完 成监测数据传输。

对解算数据进行分析,生成 数据分析曲线,通过设定阈 值对超限数据进行判断和告 警,自动记录和生成数据分

Safety Guard

Page 029 Safety Guard

System characteristics

系统特点

全球导航卫星系统 (GNSS) 地质变形监测,集卫星定位技术、精密传感测量技术、计算机网络技术、数字通讯技术和数据云技术等于一体的综合性系统,是一种多学科、多方位、深度结合的高科技系统。利用北斗等导航卫星,

测量基准站和监测点(1个或多个)之间的相对定位,通过相对定位得到各监测点不同时期的位置信息,然后采用数据软件(核心算法)对位移信息进行解算,得到毫米级的位移信息,可对超过设定阈值的形变发出相应警报。

导航卫星地质变形监测相较于传统人工边坡 变形监测,具有以下优势:

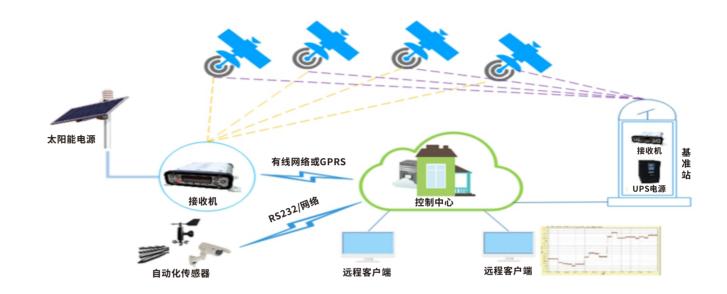
◎ 高时效

能够实时有效获取边坡监测数据,及时掌握边坡表层和深层位移情况,为边坡地质灾害应急处置提供重要依据;

◎ 高精度

地质变形监测达到毫米级,且不受环境因素影响;

◎ 全天候


通过卫星定位及无线通讯等物联网技术,能够全时段、 全天候对边坡位移情况进行自动连续监测,无需人工 参与;

◎ 低成本

一次投入,长期监测,与人工监测相比,建设成本和安全风险大大减低;

Page 030 Safety Guard

